2 条题解
-
1XzyStudio (admin) LV 8 MOD RP++ tayz @ 2024-11-16 14:41:59
数据生成器
#include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <cmath> #include <iostream> #include <algorithm> #include <set> using namespace std; int n, m, a[100001]; set< pair<int, int> > c; inline void mkd() { printf("%d %d\n", n, m); for (int i = 1; i <= n; i++) a[i] = i; random_shuffle(a + 2, a + n + 1); int l = (rand() * rand()) % (n / 10) + 1; c.clear(); for (int i = 2; i <= l; i++) printf("%d %d\n", a[1], a[i]), --m, c.insert(make_pair(1, i)), c.insert(make_pair(i, 1)); for (int i = l + 1; i <= n; i++) { int x = (rand() * rand()) % (i - 1) + 1; printf("%d %d\n", a[x], a[i]); --m; c.insert(make_pair(x, i)); c.insert(make_pair(i, x)); } for (int i = 1; i <= m; i++) { int x = (rand() * rand()) % n + 1, y = (rand() * rand()) % n + 1; for (; x == y || c.find(make_pair(x, y)) != c.end();) x = (rand() * rand()) % n + 1, y = (rand() * rand()) % n + 1; c.insert(make_pair(x, y)); c.insert(make_pair(y, x)); printf("%d %d\n", a[x], a[y]); } } inline void mkd1() { printf("%d %d\n", n, m); for (int i = 1; i <= n; i++) a[i] = i; random_shuffle(a + 2, a + n + 1); c.clear(); for (int i = 2; i <= n; i++) printf("%d %d\n", a[1], a[i]), --m, c.insert(make_pair(1, i)), c.insert(make_pair(i, 1)); for (int i = 1; i <= m; i++) { int x = (rand() * rand()) % n + 1, y = (rand() * rand()) % n + 1; for (; x == y || c.find(make_pair(x, y)) != c.end();) x = (rand() * rand()) % n + 1, y = (rand() * rand()) % n + 1; c.insert(make_pair(x, y)); c.insert(make_pair(y, x)); printf("%d %d\n", x, y); } } int main() { n = 10; m = 19; freopen("starwar1.in", "w", stdout); mkd(); n = 100; m = 200; freopen("starwar2.in", "w", stdout); mkd(); n = 1000; m = 1100; freopen("starwar3.in", "w", stdout); mkd(); n = 1000; m = 1100; freopen("starwar4.in", "w", stdout); mkd(); n = 100000; m = n - 1; freopen("starwar5.in", "w", stdout); mkd(); n = 100000; m = n - 1; freopen("starwar6.in", "w", stdout); mkd(); n = 100000; m = n - 1; freopen("starwar7.in", "w", stdout); mkd(); n = 100000; m = n; freopen("starwar8.in", "w", stdout); mkd(); n = 100000; m = n; freopen("starwar9.in", "w", stdout); mkd(); n = 100000; m = n; freopen("starwar10.in", "w", stdout); mkd(); n = 100000; m = n + 10; freopen("starwar11.in", "w", stdout); mkd(); n = 100000; m = n + 10; freopen("starwar12.in", "w", stdout); mkd(); n = 100000; m = n + 10; freopen("starwar13.in", "w", stdout); mkd(); n = 100000; m = n + 10; freopen("starwar14.in", "w", stdout); mkd(); n = 100000; m = n + 100; freopen("starwar15.in", "w", stdout); mkd(); n = 100000; m = n + 100; freopen("starwar16.in", "w", stdout); mkd(); n = 100000; m = n + 100; freopen("starwar17.in", "w", stdout); mkd(); n = 100000; m = n + 100; freopen("starwar18.in", "w", stdout); mkd(); n = 100000; m = n + 100; freopen("starwar19.in", "w", stdout); mkd1(); n = 100000; m = n + 100; freopen("starwar20.in", "w", stdout); mkd1(); n = 100000; m = n + 100; freopen("starwar.in", "w", stdout); mkd(); }
-
12024-11-16 14:40:38@
首先求出所有特殊点,特殊点的定义是从 1 开始做一遍 bfs 后,拥有非树边的点。这样的特殊点最多有 200 个。
接着我们把这些特殊点到所有点的距离都算出来。
然后我们枚举把基地建立在哪个星球上,对于每个特殊点,我们都可以算出来通过这个特殊点黑暗势力与光明势力的分界点,分界点下面的子树归光明势力所有(注意特殊边连接的两个点的深度差最多是 1)。相当于我们有一些子树,要求出它们的并的大小,这个可以用 dfs 序列解决。
#include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <cmath> #include <iostream> #include <algorithm> using namespace std; struct node { node *next; int where; } *first[200001], a[400001]; int n, m, l, dist[200001], c[200001], f[200001][21], size[200001], spe[200001], cnt, sd[301][200001], tot, L[200001], R[200001], w[10001], len; bool b[200001]; inline void makelist(int x, int y) { a[++l].where = y; a[l].next = first[x]; first[x] = &a[l]; } int r[200001]; inline void dfs(int cur) { L[cur] = ++tot; for (node *x = first[cur]; x; x = x->next) if (f[x->where][0] == cur) dfs(x->where); R[cur] = tot; } int jump(int i, int t) { for (int step = 0; t; ++step, t >>= 1) if (t & 1) i = f[i][step]; return i; } void calc(int i, int t) { if (dist[i] < t) return; i = jump(i, (dist[i] - t) / 2); w[++len] = i; } bool cmp(const int &x, const int &y) { return L[x] < L[y]; } int main() { freopen("starwar.in", "r", stdin); freopen("starwar.out", "w", stdout); memset(first, 0, sizeof(first)); l = 0; scanf("%d%d", &n, &m); for (int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); makelist(x, y); makelist(y, x); } memset(f, 0, sizeof(f)); memset(dist, 0, sizeof(dist)); dist[1] = 1; c[1] = 1; for (int k = 1, l = 1; l <= k; l++) { int m = c[l]; for (node *x = first[m]; x; x = x->next) if (!dist[x->where]) dist[x->where] = dist[m] + 1, c[++k] = x->where, f[x->where][0] = m; } for (int i = n; i; --i) { int m = c[i]; size[m] = 1; for (node *x = first[m]; x; x = x->next) if (f[x->where][0] == m) size[m] += size[x->where]; } for (int i = 1; i <= 20; i++) for (int j = 1; j <= n; j++) f[j][i] = f[f[j][i - 1]][i - 1]; cnt = 0; for (int i = 1; i <= n; i++) for (node *x = first[i]; x; x = x->next) if (f[i][0] != x->where && f[x->where][0] != i) { spe[++cnt] = i; break; } memset(sd, 0, sizeof(sd)); for (int i = 1; i <= cnt; i++) { sd[i][spe[i]] = 1; c[1] = spe[i]; for (int k = 1, l = 1; l <= k; l++) { int m = c[l]; for (node *x = first[m]; x; x = x->next) if (!sd[i][x->where]) sd[i][x->where] = sd[i][m] + 1, c[++k] = x->where; } } tot = 0; dfs(1); int ans = n; for (int i = 1; i <= n; i++) { if (i == 1) continue; len = 0; calc(i, 1); for (int j = 1; j <= cnt; j++) calc(spe[j], sd[j][i]); sort(w + 1, w + len + 1, cmp); int res = n; for (int Left = 1; Left <= len; ) { int j = Left; for (; Left <= len && L[w[Left]] >= L[w[j]] && L[w[Left]] <= R[w[j]]; ++Left); res -= size[w[j]]; } ans = min(ans, res); } printf("%d\n", ans); }
- 1
信息
- ID
- 1086
- 难度
- 9
- 分类
- (无)
- 标签
- (无)
- 递交数
- 1
- 已通过
- 1
- 通过率
- 100%
- 上传者